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Abstract
We solve the SU(N) Heisenberg spin-glass model in the limit of large N
focusing on the small temperature behaviour of the specific heat CV within
the spin-glass phase. We consider the influence of the quantum fluctuations
and observe that when they are strong the low T behaviour is quadratic. As
quantum fluctuations decrease for large values of S, a broad maximum appears
in the CV (T )/T curve.

1. Introduction

The understanding of the competition between disorder, quantum and thermal fluctuations
remains among the challenging problems of condensed matter physics [1–4]. These three
aspects are always present to some extent in experiments on real systems; therefore, a clear
understanding of their interplay is very desirable. In systems where disorder is relevant we
usually encounter the phenomenology of slow dynamics that is associated with glassy states.
When quantum fluctuations become important, phases with glassy orders can be driven to more
conventional phases through interesting quantum phase transitions [5]. Perhaps the archetype
of frustrated quantum magnets is the bi-layer Kagomé lattice SrCr9pGa12−9pO19 (SCGO) that
only becomes a spin-glass at the low temperature of about 5 K [6–10]. In sharp contrast
to ordinary classical spin-glasses, SCGO exhibits some unusual remarkable features that are
associated with strong quantum fluctuations: the magnetic fluctuation spectrum, χ ′′(ω), is
found to vanish linearly in ω at low frequencies [8], and the specific heat is proportional to
T 2 [7]. On the theoretical side, these observations have remained largely unaccounted for.

Progress in the understanding of models of disordered quantum magnets in finite
dimensions is rather slow. In fact, a great deal of our knowledge still relies on solutions
of systems with long-ranged interactions. These mean-field models are appealing because
they are mathematically more tractable while retaining much of the physics associated with
slow dynamics. Among the simplest mean field models for quantum spin-glasses, the quantum
version of the Sherrington–Kirkpatrick (SK) model has received a great deal of attention. It
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is a Heisenberg model with Gaussianly distributed random interactions between all pairs of
spins in the lattice. The model was first considered by Bray and Moore [11] and they predicted
a spin-glass phase at low temperature, with a freezing temperature Tg substantially reduced
from the usual (Ising) version of the SK model. Later, Sachdev and Ye [12] introduced a
generalization of the model to SU(N) spins which could be studied in the large N limit.
They found a very interesting spin-liquid phase down to T = 0. In more recent work on this
model, a generalized phase diagram as a function of T and S was obtained using a bosonic
representation [13–15].

The spin quantum number S can be thought of as a parameter that controls the strength
of the quantum fluctuations. For S → ∞ one goes to the ‘classical’ limit while for small
S the quantum fluctuations are strongest. A low temperature spin-glass phase was found
for all non-zero S and Tg ∼ S2 at large S [13–15]. Remarkably, the spin-liquid phase was
also found at very low spin S [12–14]. Therefore, quantum fluctuations can drive the model
through an interesting quantum critical point between a spin-liquid state at S → 0 and a
quantum spin-glass for finite S. Recent numerical studies based on quantum Monte Carlo and
exact diagonalization techniques for the SU(2) model have validated some aspects of previous
investigations [16–18].

The goal of the present work is to focus on the behaviour of the specific heat CV (T )

as a function of the strength of the quantum fluctuations. This can be done in detail for the
solvable SU(N) model in the limit of large N [13, 14, 19]. We find that CV (T )/T is linear
at small T when S is small and develops a broad maximum beneath Tg for larger values of
S. Interestingly, the linear with T behaviour for CV (T )/T has been a puzzling experimental
finding in SCGO [7]. We shall also present an intuitive argument to understand our findings.

2. The SU (N ) Heisenberg spin-glass model

The model Hamiltonian is

H = 1√N N

∑
i< j

Ji j �Si · �Sj , (1)

where the magnetic exchange couplings Ji j are independent, quenched random variables
distributed according to a Gaussian distribution where J is the standard deviation and the unit
of energy. As already pointed out by Bray and Moore [11], one uses the replica trick to average
over the disorder [2] and the lattice infinite-range model maps exactly onto a self-consistent
single site model with the action (in imaginary time τ , with β the inverse temperature)

Seff = SB − J 2

2N

∫ β

0
dτ dτ ′ Qab(τ − τ ′)�Sa(τ ) · �Sb(τ ′) (2)

and the self-consistency condition

Qab(τ − τ ′) = 1

N2
〈�Sa(τ ) · �Sb(τ ′)〉Seff (3)

where a, b = 1, . . . , n denote the replica indices (the limit n → 0 has to be taken later) and
SB is the Berry phase of the spin [12]. Due to the time dependence, the solution of these
mean-field equations remains a very difficult problem for N = 2, even in the paramagnetic
phase [16].

We shall use the bosonic representation [12–15] for the spin operators, where S is
represented with Schwinger bosons b by Sαβ = b†

αbβ − Sδαβ , with the constraint
∑

α b†
αbα =

SN (0 � S). In the language of Young tableaux, these representations are described by one
line of length SN . They are a natural generalization of an SU(2) spin of size S.
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Figure 1. The specific heat divided by the temperature CV /T as a function of the temperature for
various values of the spin S in the spin-glass phase. The x-axis has been normalized by Tg(S) ∼ S2

and the y-axis by the specific heat at Tg and the corresponding value of the spin C
Tg
V (S) for clearer

visualization. The results corresponds to S = 0.5, 1, 1.5, 2, 4, 5, 8, 12 and 16 (bottom to top). The
results for S = 3/2 that are relevant for the SCGO system are highlighted by the thick curve. The

inset shows the behaviour of the specific heat at Tg , C
Tg
V , as a function of S.

In the N → ∞ limit, the mean field self-consistent model (2)–(3) reduces to an integral
equation for the Green function of the boson Gab

b (τ ) ≡ −〈T ba(τ )b†b(0)〉 where the bar denotes
the average over disorder and the brackets the thermal average [12]:

(G−1
b )ab(iνn) = iνnδab + λaδab − 	ab

b (iνn) (4)

	ab
b (τ ) = J 2(Gab

b (τ ))2Gab
b (−τ ) (5)

Gaa
b (τ = 0−) = −S. (6)

The local spin susceptibility χloc(τ ) = 〈S(τ )S(0)〉 is given in the large N limit by
χloc(τ ) = Gaa

b (τ )Gaa
b (−τ ).

In the spin-glass phase it is enough to perform a one step symmetry broken solution [13–
15]. Equations (4)–(6) were solved self-consistently on the Matsubara axis. The general form
of the spin susceptibility can written as χ ′′

loc(ω) = qE Aδ(ω) + χ ′′
reg(ω), where qE A is the spin

glass order parameter [13, 14, 19].

3. The specific heat

The specific heat can be computed by taking the numerical derivative of the energy of the
system [13],

E(T ) = − J 2

2

∫ β

0
dτ [Gab(τ )Gab(−τ )]2. (7)

The results for the spin-glass phase are shown in figure 1 for various values of S. We have
scaled the x-axis by Tg ∝ S2 and the y-axis by CV (Tg) for clearer visualization. When S is
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small, CV /T is linear in T up to Tg. However, when S increases, reducing the importance
of the quantum fluctuations, there is a dramatic change of behaviour, with a broad maximum
appearing in the CV /T curves. The position of this maximum shifts down to 0 for increasing S.

An interesting aspect of this result is that a linear form of CV /T has been found in the
SCGO compound, and has remained as a puzzling result [7]. In SCGO the active magnetic
sites are Cr3+ with S = 3/2. Our model results for S = 3/2 are highlighted in bold in figure 1.
The results show that the linear regime of CV /T extends all the way up to Tg . This observation
is also true for the experimental behaviour reported in SCGO [7], so our model results suggests
that SCGO should be considered as a rather small S system with strong quantum fluctuations.

In what follows we shall argue that this behaviour can be understood in terms of other
rather intuitive results of the model, namely the behaviour of the order parameter qE A and the
dynamical spin susceptibility χ ′′(ω).

In a previous work [13, 19] it was found that the order parameter at low T follows a simple
quadratic behaviour qE A(T ) = qE A(0)(1 − αT 2), with α an S-dependent constant. On the
other hand, it was also found [19] that χ ′′(ω) is of the form qE Aδ(ω) + χ ′′

reg(ω), where the
regular part shows a pseudogap in the limit of T → 0 with a low frequency behaviour given
by ∝ω/S. As the temperature is increased, within the spin-glass ordered phase, the δ-function
contribution due to the frozen moments gradually melts and its spectral weight partially fills
up the pseudogap. The width of the associated excitations is given by T [19] as one would
expect for diffusive modes [20]. One can now combine these results with the expression for
the energy [16, 20]

U =
∫

ωχ ′′(ω) dω =
∫

ω(1 − e−ω/T )ρ(ω) dω (8)

where ρ(ω) is the spectral density whose integral obeys the sum-rule S(S + 1). We can thus
argue that as T increases from 0, an amount proportional to T 2 of the spectral weight of the
δ(ω) will melt and produce a regular contribution to the low frequency part of ρ(ω) with width
∼T and spectral weight ∼T 2. Expanding the exponential in (8), we find that the change in
energy is approximately given by

�U =
∫ T

0
ω

(
ω

T

)
T dω ∼ T 3. (9)

Since CV (T ) = ∂U/∂T the quadratic form for CV (T ) follows.

4. Conclusion

We have obtained the detailed behaviour of the low temperature specific heat within the spin-
glass phase of a disordered quantum magnet model that can be solved analytically.

We found that when the quantum fluctuations are strongest for small values of S,CV (T )/T
shows a simple linear with T behaviour up to Tg . When quantum fluctuations are reduced, a
broad maximum in CV (T )/T appears and moves down in T .

Interestingly, the linear with T behaviour up to Tg has been reported [7] in the
SrCr9pGa12−9pO19 compound for p ranging from 0.3 to 0.98, and has remained largely
unaccounted for. Our model results seem to indicate that SCGO should be considered as
a small S system with strong quantum fluctuations.
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